: Prince Moulay Abdellah

Cours

FONCTIONS LOGARITHMES

Niveau: 2 BAC-PC-SVT

Année : 2022-2023

I Fonction logarithme népérienne :

a. Activité:

On considère la fonction définie par : $\begin{cases} f : \]0, +\infty[\to \mathbb{R} \\ & x \mapsto f\left(x\right) = \frac{1}{x} \end{cases}$

- 1. Est-ce que admet une fonction primitive sur $]0,+\infty[$? (justifier votre réponse).
- 2. Combien de fonctions primitives \mathbf{F} tel que $\mathbf{F}(1) = 0$?

b. Définition :

La fonction primitive \mathbf{F} de $\mathbf{f}(\mathbf{x}) = \frac{1}{\mathbf{x}}$ sur l'intervalle $]0,+\infty[$ qui s'annule en 1 $(\mathbf{F}(1)=0)$ s'appelle

La fonction logarithme népérienne et note F(x) = ln(x) ou F(x) = ln x. Avec

$$F'(x) = f(x) \Leftrightarrow (\ln x)' = \frac{1}{x}$$

c. Remarque

Au lieu d'écrire $F(x) = \ln x$ on écrit $f(x) = \ln x$.

d. Conséquences:

- La fonction $f(x) = \ln x$ est définie sur $]0,+\infty[$.
- La fonction $f(x) = \ln x$ est dérivable sur $]0,+\infty[$ (car $(\ln x)' = \frac{1}{x}$).
- La fonction $f(x) = \ln x$ est continue sur $]0,+\infty[$ (car la fonction logarithme népérienne est dérivable)
- La fonction $f(x) = \ln x$ est strictement croissante sur $\left]0,+\infty\right[\left(-\cos\left(\ln x\right)' = \frac{1}{x} > 0 \right) \right]$.
- $\qquad \text{En d\'eduit } \forall a,b \in \left]0,+\infty\right[,a < b \Leftrightarrow \ln\left(a\right) < \ln\left(b\right) \text{ et } \forall a,b \in \left]0,+\infty\right[,a = b \Leftrightarrow \ln\left(a\right) = \ln\left(b\right).$

<u>e.</u> Exercice

- Déterminons le domaine de définition de la fonction $f(x) = \frac{3}{\ln x}$.
- Résoudre l'équation suivante : (E) : ln(2x)-ln(x-1)=0.
- Déterminons le domaine de définition de la fonction $f(x) = \sqrt{\ln x}$.
- Résoudre l'inéquation suivante : (E') : $\ln(2x) \ln(x-1) < 0$.

$\underline{\mathbf{f}}$ Signe de $\ln x$:

Soit: $x \in]0,+\infty[$ on a trois cas:

- 1^{er} cas: x = 1 donc: ln1 = 0.
- $2^{\text{ième}} x \in]1, +\infty[$, $donc: x > 1 \Rightarrow \ln x > \ln 1 (\text{c.à.d. } x > 1 \Rightarrow \ln x > 0 (\text{car } \ln 1 = 0)).$
- $3^{\text{ième}} \cos x \in \left]0,1\right[$, donc: $x < 1 \Rightarrow \ln x < \ln 1$ (c.à.d. $x < 1 \Rightarrow \ln x < 0$)
- D'où le signe de lnx par un tableau

X	0	1	+∞
ln x		— 0	+

Propriétés algébriques :

a. Propriétés:

Pour tous a > 0 et b > 0 et $r \in a$ on a

- $\ln ab = \ln a + \ln b$ (propriété admise).
- $\ln\left(\frac{1}{a}\right) = -\ln a$.
- $\frac{3}{b} = \ln a \ln b$
- $4. \quad \ln a^r = r \ln a .$
- **b.** Preuve pour la 2^{ième} et la 3^{ième} :
- c. Remarque:
 - $\ln(\sqrt{a}) = \frac{1}{2} \times \ln a$ et $\ln(\sqrt[3]{a}) = \frac{1}{3} \times \ln a$.
- On écrit :
 - $\ln(x) \times \ln(x) = \ln^2(x)$.
 - On général: $n \in \mathbb{N}^*$ on a: $\underbrace{\ln(x) \times \ln(x) \times \dots \times \ln(x)}_{n \text{ fois}} = \ln^n(x) = \ln^n x$
 - <u>d.</u> Exemple :
 - 1. On pose $\ln 2 = 0.7$ et $\ln 3 = 1.1$; calculons: $\ln 4$ et $\ln 8$ et $\ln \sqrt{3}$ et $\ln \sqrt[3]{2}$ et $\ln \sqrt[3]{3}$.

Limites:

<u>a.</u> Propriétés :

$\lim_{x\to+\infty}\ln(x)=+\infty$	$\lim_{x\to 0^+} \ln(x) = -\infty$	$\lim_{x\to 0^+} x \times \ln(x) = 0^-$
$\lim_{x\to+\infty}\frac{\ln(x)}{x}=0$	$\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$	$\lim_{x\to 0^+} x^n \times \ln(x) = 0^-$
$\lim_{x\to 1}\frac{\ln(x)}{x-1}=1$	$\lim_{x\to 0}\frac{\ln(x+1)}{x}=1$	

b. Remarques:

- $\lim_{x\to 0^+} \ln \left(x\right) = -\infty \text{ . Donc la courbe } \left(C_f\right) \text{ de } f \text{ admet une asymptote verticale c'est la droite } \\ \text{d'équation } x=0 \text{ (l'axe des ordonnées)}.$
- $\lim_{x\to +\infty} \ln(x) = +\infty \text{ Donc la courbe } \left(C_f\right) \text{ de } f \text{ admet une branche parabolique (à déterminer)}.$
- $\lim_{x\to +\infty} \frac{\ln x}{x} = 0 \text{ donc } a = \lim_{x\to +\infty} \frac{f\left(x\right)}{x} = 0 \text{ .Donc la courbe } \left(C_f\right) \text{ de } f \text{ admet une branche parabolique } de \text{ direction l'axe des abscisses .}$
- **c.** Application :
 - 1. Calculer: $\lim_{x\to +\infty} \frac{\ln(x+2)}{x}$.
 - $\underset{x>0}{\text{2.}} \quad \text{Calculer}: \lim_{\substack{x\to 0\\x>0}} \frac{1}{x\times \ln x}.$
 - 3. Calculer: $\lim_{x\to 0} \frac{\ln(x+1)}{x^3}$.

IV.

Fonction de la forme : f(x) = ln(u(x))

a. Remarque:

On pose : $g(x) = \ln x$ et la fonction u(x) donc : $g \circ u(x) = g(u(x)) = \ln(u(x))$.

Conclusion : la fonction $f(x) = \ln(u(x))$ est la composée de deux fonctions .

- Domaine de définition de f est de la manière suivante : $x \in D_f \Leftrightarrow (x \in D_u \text{ et } u(x) > 0)$.
- Si de plus la fonction u(x) est dérivable on $a : \left[\ln(u(x)) \right] = \frac{u'(x)}{u(x)}$.
- De même on a : $\left[\ln\left(\left|u(x)\right|\right)\right] = \frac{u'(x)}{u(x)}$

<u>b.</u> Démonstration :

c. Exemple:

Calculons f' avec $f(x) = \ln |x^2 - x|$.

d. Vocabulaire et remarque :

Soit f fonction dérivable sur I et $\forall x \in I : u(x) \neq 0$.

La fonction $x \mapsto \frac{u'(x)}{u(x)}$ est appelée la dérivée logarithmique de la fonction u sur I.

• Puis que $\left[\ln\left(\left|u(x)\right|\right)\right] = \frac{u'(x)}{u(x)}$ donc les fonctions primitives de la fonction $x \mapsto \frac{u'(x)}{u(x)}$ sur I

sont les fonctions de la forme $F(x) = \ln |u(x)| + c$ avec $c \in \mathbb{R}$.

e. Exemple:

Trouver les fonctions primitives de la fonction $f(x) = \frac{5}{x-2}$ sur $\left[2, +\infty \right]$

V. Etude de la fonction $f(x) = \ln x$:

- Domaine de définition :
- Continuité:
- Limites:
- Sens de variation de f.
- La courbe représentative de f :

* Remarque:

Site web: www.cours.profmaths.ma

- La fonction $f(x) = \ln x$ est continue sur $[0, +\infty]$.
- La fonction $f(x) = \ln x$ est strictement croissante sur $]0, +\infty[$.
- Donc: $f(]0,+\infty[)=\mathbb{R}$ donc l'équation $x\in]0,+\infty[$; f(x)=1 admet une solution et une seule on note ce nombre unique par $e\simeq 2,718$ (valeur approché) qui est un nombre irrationnel.

3

- Conclusion: $\ln e = 1$ et $\ln \frac{1}{e} = -1$ et $\ln e^r = r$; $(r \in \mathbb{Q})$.
- Application: on détermine l'ensemble de définition de $f(x) = \frac{1}{3 \ln(x)}$.

WI.

Fonction logarithme de base a et propriétés :

- **A.** Fonction logarithme de base a :
- a. Définition:

Soit $a \in \left]0,1\right[\cup\left]1,+\infty\right[$ (c.à.d. a strictement positif et différent de 1) .

La fonction définie par :

$$f:]0,+\infty[\to \mathbb{R}$$

$$x \to f(x) = \frac{\ln(x)}{\ln(a)}$$

S'appelle la fonction logarithme de base a , on note cette fonction par $f = \log_a d'où : f(x) = \log_a(x)$

b. Conséquences :

•
$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$
 et $\log_a(1) = \frac{\ln(1)}{\ln(a)} = 0$.

•
$$\log_a(a) = \frac{\ln(a)}{\ln(a)} = 1$$
 et $\log_a(e) = \frac{\ln(e)}{\ln(a)} = \frac{1}{\ln(a)}$.

c. Cas particuliers :

- Cas $a = e : log_e(x) = \frac{ln(x)}{ln(e)} = ln(x)$ donc logarithme de base a = e est le logarithme népérienne.
- Cas a = 10: on obtient la fonction $f(x) = \log_{10}(x)$ s'appelle la fonction logarithme décimale on note $\log_{10} = \text{Log d'où}: f(x) = \log_{10}(x) = \text{Log}(x)$.
- $Log(10^r) = r ; Log(10) = 1 ; Log(1) = 0.$
- **B.** Propriétés logarithme de base a :
- <u>a.</u> Propriétés :

Soit $a \in]0,1[\,\cup\,]1,+\infty[$ et pour tout x et y de $]0,+\infty[$ on a :

•
$$\log_a(x \times y) = \log_a(x) + \log_a(y)$$
.

•
$$\log_a\left(\frac{1}{y}\right) = -\log_a(y)$$
.

•
$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$
.

•
$$\log_a(x^r) = r \times \log_a(x)$$
 avec $r \in \mathbb{Q}$.

•
$$\log_a\left(\sqrt{x}\right) = \frac{1}{2} \times \log_a\left(x\right)$$
 et $\log_a\left(\sqrt[3]{x}\right) = \frac{1}{3} \times \log_a\left(x\right)$.

b. Démonstration :

- C. Etude de la fonction : $f(x) = \log_a(x)$: avec $f(x) = \log_a(x) = \frac{\ln(x)}{\ln(a)}$
 - Domaine de définition de f :
 - Continuité de f :
 - Limites aux bornes de D_f:
 - Sens de variations de f:
 - Courbe représentative de f dans un repère orthonormé a = 2 et $a = \frac{1}{2}$.

Exercices:

1. On simplifie:

$$\log_{2}(8) - \log_{2}(\sqrt[3]{32}) + \log_{2}(9) - \log_{2}(3)$$

$$\log_{3}(\frac{15}{4}) + \log_{2}(\frac{1}{27}) + \log_{3}(\frac{4}{5})$$

$$\log(100) - \log(10^{2013}) + \log(\frac{1}{10^{100}})$$

- 4. Montrer que: $\forall a, b \in]1, +\infty[$; $\log_b(a) = \frac{1}{\log_a(b)}$
- 5. Résoudre dans \mathbb{R} : l'équation suivante $\log_3(2x) \times (\log_5(x) 1) = 0$.
- 6. Résoudre dans \mathbb{R} l'inéquation suivante $\log_{\sqrt{3}}(3x-1) \ge \log_{\sqrt{3}}(x+1)$.
- 7. Etudier la fonction suivante : $f(x) = \log_5(x+1)$